Review of Additional Fire Test Report
WF No. 172002

WF Report Number:
172112

Date:
27th March 2008

Test Sponsor:
Hunter Douglas Construction Elements B.V.
Bodycote warringtonfire Report
No. 172112

Review of Additional Fire Test Report
WF No. 172002

Sponsored By

Hunter Douglas Construction
Elements B.V.
Industriepark 17
Postbus 128
9350 Ac Leek
The Netherlands
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST DETAILS</td>
<td>4</td>
</tr>
<tr>
<td>SIGNATORIES</td>
<td>6</td>
</tr>
</tbody>
</table>

Commercial in confidence
Test Details

Introduction

Additional test report WF No. 172002 relates to a test performed in accordance with the procedures defined in BS 476: Part 6: 1989, Method of Test for the Fire Propagation for Products, on the following specimens:

The specimens consisted of the “Luxalon Quadroclad Panel”, a composite panel having an overall thickness of 25mm, consisting of an aluminium honeycomb core, with a PVDF coated aluminium sheet bonded to one side, and a "Luxacote" coated aluminium sheet bonded to the reverse side. Both aluminium sheets were bonded to the aluminium honeycomb core utilising a two part polyurethane adhesive.

The PVDF coated aluminium sheet comprised a 0.7mm thick, alkali degreased and chromate pretreated aluminium sheet (alloy designation “EN AW 3005”) which had been coated on both faces with an epoxy primer, applied utilising the coil coating process to a dry film thickness of 5 microns and then coated on one face (exposed face) with a PVDF base coat (colour reference “RAL 9006”) applied to a dry film thickness of 21 microns and then a clear PVDF top coat applied to a dry film thickness of 11 microns. Both coats were applied utilising the coil coating process.

The “Luxacote” coated aluminium sheet comprised a 0.7mm thick, alkali degreased and “Anarcoat R” chromate pretreated aluminium sheet (alloy designation “EN AW 3005”) which had been coated on one face (exposed face) with a polyurethane base coat (colour reference “RAL 9010”) applied to a dry film thickness of 16 microns and then a clear polyurethane/polyamid top coat applied to a dry film thickness of 10 microns. Both coats were applied utilising the coil coating process.

Further details of the composition of the product have been provided and are held on our confidential file relating to this investigation.

Test Results

Additional test report WF No. 172002 contains the following results:

- Fire propagation index, $I = 0.8$
- subindex, $i_1 = 0.1$
- subindex, $i_2 = 0.7$
- subindex, $i_3 = 0.0$
Confirmation of Specification

It has been confirmed in writing by Hunter Douglas Construction Elements B.V. that there have been no changes to the product description contained within additional test report WF No. 172002 and that the product which is currently being manufactured is identical in every respect to the specimens which were tested.

It has also been confirmed in writing that no further fire testing of the previously fire tested specification has been performed since the issue of the test report, and no other individual or organisation has been asked to provide a technical review of the reports.

Conclusions

The procedures adopted for the original test (BS 476: Part 6: 1989) have been re-examined and are identical in all respects to those currently in use (BS 476: Part 6: 1989), therefore, with respect to additional test report WF No. 172002, its contents shall remain valid until 2nd June 2009.

This review should be read in conjunction with additional test report WF No. 172002.

Validity

This review is based on information used in the original additional test report. No other information or data has been submitted by Hunter Douglas Construction Elements B.V., which could affect this review.
Signatories

Responsible Officer
S Deeming *

Approved
M Dale *
Deputy Operations Manager

Authorised
C. Dean *
Operations Manager

* For and on behalf of Bodycote warringtonfire.

Report Issued: 27th March 2008
BS 476: Part 7: 1997
Method For Classification Of The Surface Spread Of Flame Of Products

WF Additional Report Number:
172003

Date:
27th March 2008

Test Sponsor:
Hunter Douglas Construction Elements B.V.
Bodycote warringtonfire Additional Test Report
No. 172003

BS 476: Part 7: 1997
Method For Classification Of The
Surface Spread Of Flame Of Products

Sponsored By

Hunter Douglas Construction Elements B.V.
Industriepark 17
Postbus 128
9350 Ac Leek
The Netherlands

This report is additional to that issued as WF No. 108009 (Issue 2) dated 2nd June 1999 and has been issued at the request of the sponsor. The original test report remains valid and is not replaced by this additional report. The product referred to in the original report and this additional test report has not been re-tested since the original test and neither has a technical review of the original test report resulting in any technical changes been carried out.

The name of one of the original co-sponsors of the test has been removed. The sponsor of the test has stated that the material described in this additional report is identical to the material which was tested. The name and address of the original co-sponsor that has been removed has been documented and the documentation is maintained in the confidential file covering this investigation.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST DETAILS</td>
<td>4</td>
</tr>
<tr>
<td>DESCRIPTION OF TEST SPECIMENS</td>
<td>5</td>
</tr>
<tr>
<td>TEST RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>SIGNATORIES</td>
<td>7</td>
</tr>
<tr>
<td>Table 1</td>
<td>8</td>
</tr>
<tr>
<td>APPENDIX 1</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIX 2</td>
<td>10</td>
</tr>
</tbody>
</table>
Test Details

Purpose of test
To determine the performance of a product when it is subjected to the conditions of the test specified in BS 476: Part 7: 1997, "Fire tests on building materials and structures, method for classification of the surface spread of flame of products". This test was therefore performed in accordance with the procedure specified in BS 476: Part 7: 1997, and this report should be read in conjunction with that British Standard.

Scope of test
BS 476: Part 7: 1997 specifies a method of test for measuring the lateral spread of flame along the surface of a specimen of a product orientated in the vertical position, and a classification system based on the rate and extent of flame spread. It provides data suitable for comparing the performances of essentially flat materials, composites, or assemblies, which are used primarily as the exposed surfaces of walls or ceilings.

Fire test study group/EGOLF
Certain aspects of some fire test specifications are open to different interpretations. The Fire Test Study Group and EGOLF have identified a number of such areas and have agreed Resolutions which define common agreement of interpretations between fire test laboratories which are members of the Groups. Where such Resolutions are applicable to this test they have been followed.

Instruction to test
The test was conducted on the 18th May 1999 at the request of Hunter Douglas Construction Elements B.V., the sponsor of the test.

Provision of test specimens
The specimens were supplied by the sponsor of the test. **Bodycote warringtonfire** was not involved in any selection or sampling procedure.

Conditioning of specimens
The specimens were received on the 22nd April 1999 and were conditioned to constant mass at a temperature of 23 ± 2°C and a relative humidity of 50 ± 5% prior to testing.

Form in which the specimens were tested
Assembly

Specimen mounting
Each specimen was placed over 25mm thick by 20mm wide calcium silicate based spacers positioned around its perimeter and mounted onto a backing board so that a 25mm enclosed air gap was provided between the unexposed face of the specimen and the backing board.

Exposed face
The PVDF (colour reference “Grey”) face of the specimens was exposed to the heating conditions of the test.
Description of Test Specimens

The description of the specimens given below has been prepared from information provided by the sponsor of the test. All values quoted are nominal, unless tolerances are given.

The specimens consisted of the "Luxalon Quadroclad Panel", a composite panel having an overall thickness of 25mm, consisting of an aluminium honeycomb core, with a PVDF coated aluminium sheet bonded to one side, and a "Luxacote" coated aluminium sheet bonded to the reverse side. Both aluminium sheets were bonded to the aluminium honeycomb core utilising a two part polyurethane adhesive.

The PVDF coated aluminium sheet comprised a 0.7mm thick, alkali degreased and chromate pretreated aluminium sheet (alloy designation “EN AW 3005”) which had been coated on both faces with an epoxy primer, applied utilising the coil coating process to a dry film thickness of 5 microns and then coated on one face (exposed face) with a PVDF base coat (colour reference “RAL 9006”) applied to a dry film thickness of 21 microns and then a clear PVDF top coat applied to a dry film thickness of 11 microns. Both coats were applied utilising the coil coating process.

The "Luxacote" coated aluminium sheet comprised a 0.7mm thick, alkali degreased and "Anarcoat R" chromate pretreated aluminium sheet (alloy designation “EN AW 3005”) which had been coated on one face (exposed face) with a polyurethane base coat (colour reference “RAL 9010”) applied to a dry film thickness of 16 microns and then a clear polyurethane/polyamid top coat applied to a dry film thickness of 10 microns. Both coats were applied utilising the coil coating process.

Further details of the composition of the product have been provided and are held on our confidential file relating to this investigation.
Test Results

Results and observations

The test results for the individual specimens, together with observations made during the test and comments on any difficulties encountered during the test are given in Table 1.

Classification

In accordance with the class definitions given in BS 476: Part 7: 1997, the specimens tested are classified as class 1.

Criteria for classification

If the prefix 'D' or suffix 'R' or 'Y' is included in the classification, this indicates that the results should be treated with caution. An explanation of the reason for the prefix and suffixes is given in Appendix 1, together with the irradiance along the horizontal reference line of the specimen position during the test and the classification limits specified in the Standard.

Applicability of test result

The test results relate only to the behaviour of the test specimens of the product under the particular conditions of test; they are not intended to be the sole criterion for assessing the potential fire hazard of the product in use.

The test results relate only to the specimens of the product in the form in which they were tested. Small differences in the composition or thickness of the product may significantly affect the performance during the test and may therefore invalidate the test results. Care should be taken to ensure that any product which is supplied or used is fully represented by the specimens which were tested.

Attention is drawn to Appendix 2 entitled "Effect of thermal characteristics on the performance of assemblies".

Validity

The specification and interpretation of fire test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over five years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

This report may only be reproduced in full. Extracts or abridgements shall not be published without permission of **Bodycote warringtonfire**.
Signatories

Responsible Officer
S. Deeming*

Approved
M. Dale*
Deputy Operations Manager

Authorised
C. Dean*
Operations Manager

* For and on behalf of Bodycote warringtonfire.

Report Issued: 27th March 2008

Commercial in confidence
Table 1

<table>
<thead>
<tr>
<th>SPECIMEN No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum distance travelled at 1.5 minutes (mm)</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Distance (mm)</td>
<td>Time to travel to indicated distance (minutes : seconds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>785</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time to reach maximum distance travelled: 1:00 1:00 1:00 1:00 1:00 1:00

Maximum distance travelled in 10 minutes (mm): <50 <50 <50 <50 <50 <50

Note: Six specimens are usually tested. If the test on any specimen is deemed to be invalid, as defined in the Standard, it is permissible for up to a maximum of nine specimens to be tested in order to obtain the six valid test results.

Observations made during test and comments on any difficulties encountered during the test:

NONE
Appendix 1

| Irradiance along the horizontal reference line of the specimen position during the test | Distance along reference line from the hotter end of the specimen position (mm) | 75 | 225 | 375 | 525 | 675 | 825 |
| Irradiance at points specified above (kW/m²) | 32.5 | 21.0 | 14.5 | 10.0 | 7.0 | 5.0 |
| Note: A tolerance of ± 0.5 kW/m² is specified on the irradiance measurement |

Classification of spread of flame

Classification	Spread of Flame at 1.5 min	Final Spread of Flame		
	Limit (mm)	Limit for one specimen (mm)	Limit (mm)	Limit for one specimen (mm)
Class 1	165	165 + 25	165	165 + 25
Class 2	215	215 + 25	455	455 + 45
Class 3	265	265 + 25	710	710 + 75
Class 4		Exceeding the limits for class 3		

Explanation of prefix and suffixes which may be added to the classification

1. A suffix R is added to the classification if more than six specimens are required in order to obtain six valid test results (e.g. class 2R).

2. A prefix D is added to the classification of any product which does not comply with the surface characteristics specified in the Standard and has therefore been tested in a modified form (e.g. class D3).

3. A suffix Y is added to the classification if any softening and/or other behaviour that may affect the flame spread occurs (e.g. class 3Y).

For example, a classification of D3RY could be achieved indicating (a) a modified surface has been used; (b) a class 3 result has been obtained; (c) additional specimens have been used to obtain 6 valid results and; (d) softening and/or other behaviour has occurred which is considered to have affected the test result.
Appendix 2

Effect of thermal characteristics on the performance of specimens

The result of the test in accordance with BS 476: Part 7: 1997 is applicable only to the specimens in the form in which they were tested. Small differences in the composition or thickness of the product may significantly affect the performance during the test and may therefore invalidate the test result. It is important that the specimens which are tested fully represent the product which is supplied and the manner in which it will be used. This may require a product to be tested in a number of different ways to determine the classification which will be achieved in its different methods of use.

A surface coating, for example, may be applied to a selected substrate using a particular method and application rate. The test classification which is achieved for that set of specimens will be applicable only to that situation. If the substrate or method and rate of application in a particular practical situation are different from that which was tested, then it will be necessary to determine the classification which will be achieved for that situation. Similarly, specimens incorporating a wallcovering must be fully representative of the situation which occurs in practice and will normally consist of the wallcovering bonded to a chosen substrate with a chosen adhesive; the test result will only apply to that composite system. The same principle applies to any composite or assembly which is being investigated.

It is sometimes possible to assume a 'worst case' situation which will enable a chosen set, or sets, of specimens to be constructed and tested to provide a foundation for the assessment of the probable performance of variations within the system. Similarly, it is sometimes possible to formulate a series of exploratory tests to investigate the effect of variations within a product or system, usually culminating in a series of formal tests to provide the basis for a composite assessment of pre-determined variables. In such cases, however, it is essential that careful planning of the programmes is undertaken by suitably qualified fire safety practitioners.

The following is re-produced from Appendix B of BS 476: Part 7: 1997;

With thin materials or composites, particularly those with a high thermal conductivity, the presence of an air gap and the nature of any underlying construction may significantly affect the ignition performance of the exposed surface. Increasing the thermal capacity of the underlying construction increases the "heat sink" effect and may delay ignition of the exposed surface. Any backing provided to the test specimen and in intimate contact with it, such as the non-combustible spacers, may alter this "heat sink" effect and may be fundamental to the test result itself. The influence of the underlying layers on the performance of the assembly should be understood and care should be taken to ensure that the result obtained on any assembly is relevant to its use in practice.
The following advice is offered on the construction and preparation of test specimens;

(a) Where the thermal properties of the product are such that no significant heat loss to the underlying layers can occur, e.g. a material or composite greater than approximately 6 mm thick of high thermal capacity and/or low thermal conductivity, then the product should be tested backed only by the backing board.

(b) Where the product is normally used as a free-standing sheet and the characteristics noted in (a) do not apply, then an air space should be provided at the back of the product by testing over spacers of non-combustible insulation board 20 mm wide and (25 ± 1)mm thick.

(c) Where the product is to be used over a low density non-combustible substrate and the characteristics noted in (a) do not apply, then the product should be tested in conjunction with that substrate.

(d) Where the product is to be used over a combustible substrate and the characteristics noted in (a) do not apply, then the product should be tested in conjunction with that substrate.

NOTE: Discussions are taking place in ISO/TC92/SC1 concerning the possible use of a restricted range of reference substrates (mainly non-combustible) where it is not apparent or possible to test materials or products in the representative end-use substrate.